函数的最小正周期为 .
不等式的解集用区间表示为_____.
已知数列中,,,的前项和为,且满足().
(1)试求数列的通项公式;
(2)令,是的前项和,证明:;
(3)证明:对任意给定的,均存在,使得时,(2)中的恒成立.
已知两动圆和(),把它们的公共点的轨迹记为曲线,若曲线与轴的正半轴的交点为,且曲线上的相异两点满足:.
(1)求曲线的轨迹方程;
(2)证明直线恒经过一定点,并求此定点的坐标;
(3)求面积的最大值.
如图所示:湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的点处,乙船在中间点处,丙船在最后面的点处,且.一架无人机在空中的点处对它们进行数据测量,在同一时刻测得,.(船只与无人机的大小及其他因素忽略不计)
(1)求此时无人机到甲、丙两船的距离之比;
(2)若此时甲、乙两船相距100米,求无人机到丙船的距离.(精确到1米)
已知函数是偶函数.
(1)求实数的值;
(2)若关于的不等式在上恒成立,求实数的取值范围.