满分5 > 高中数学试题 >

已知函数f(x)=|x+a|+|x-2|. (1)当a=-3时,求不等式f(x)...

    已知函数f(x)=|xa|+|x-2|.

(1)a=-3时,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

 

(1) {x|x≥4或x≤1};(2) [-3,0]. 【解析】 试题(1)解绝对值不等式首先分情况去掉绝对值不等式组,求出每个不等式组的解集,再取并集即得所求.(2)原命题等价于-2-x≤a≤2-x在[1,2]上恒成立,由此求得求a的取值范围 试题解析:(1)当a=-3时,f(x)= 当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1; 当2<x<3时,f(x)≥3无解; 当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4. 所以f(x)≥3的解集为{x|x≤1或x≥4}. 6分 (2)f(x)≤|x-4||x-4|-|x-2|≥|x+a|. 当x∈[1,2]时,|x-4|-|x-2|≥|x+a|(4-x)-(2-x)≥|x+a| -2-a≤x≤2-a, 由条件得-2-a≤1且2-a≥2,解得-3≤a≤0, 故满足条件的实数a的取值范围为[-3,0].
复制答案
考点分析:
相关试题推荐

在直角坐标系中,直线,圆,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

1)求的极坐标方程;

2)若直线的极坐标方程为,设的交点为,求的面积.

 

查看答案

设函数,且(其中e是自然对数的底数).

(Ⅰ)若,求的单调区间;

(Ⅱ)若,求证:

 

查看答案

已知椭圆的离心率为分别是椭圆的左右焦点,过点的直线交椭圆于两点,且的周长为12

(Ⅰ)求椭圆的方程

(Ⅱ)过点作斜率为的直线与椭圆交于两点,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.

 

查看答案

如图在梯形中,的中点,以为折痕把折起,使点到达点的位置,且

       

(Ⅰ)求证:平面

(Ⅱ)设分别为的中点,求三棱锥的体积.

 

查看答案

高铁、移动支付、网购与共享单车被称为中国的新四大发明,为了解永安共享单车在淮南市的使用情况,永安公司调查了100辆共享单车每天使用时间的情况,得到了如图所示的频率分布直方图.

(Ⅰ)求图中的值;

(Ⅱ)现在用分层抽样的方法从前3组中随机抽取8辆永安共享单车,将该样本看成一个总体,从中随机抽取2辆,求其中恰有1辆的使用时间不低于50分钟的概率;

(Ⅲ)为进一步了解淮南市对永安共享单车的使用情况,永安公司随机抽取了200人进行调查问卷分析,得到如下2×2列联表:

 

经常使用

偶尔使用或不用

合计

男性

50

 

100

女性

 

40

 

合计

 

 

200

 

 

完成上述2×2列联表,并根据表中的数据判断是否有85%的把握认为淮南市使用永安共享单车的情况与性别有关?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

 

 

 

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.