如图,抛掷一蓝、一黄两枚质地均匀的正四面体骰子,分别观察底面上的数字.
(1)用表格表示试验的所有可能结果;
(2)列举下列事件包含的样本点:A=“两个数字相同”,B=“两个数字之和等于5”,C=“蓝色骰子的数字为2”.
已知函数f(x)=|x+a|+|x-2|.
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.
在直角坐标系中,直线,圆,以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)求,的极坐标方程;
(2)若直线的极坐标方程为,设的交点为,求的面积.
设函数,且(其中e是自然对数的底数).
(Ⅰ)若,求的单调区间;
(Ⅱ)若,求证:.
已知椭圆的离心率为,,分别是椭圆的左右焦点,过点的直线交椭圆于,两点,且的周长为12.
(Ⅰ)求椭圆的方程
(Ⅱ)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.
如图在梯形中,,,为的中点,以为折痕把折起,使点到达点的位置,且.
(Ⅰ)求证:平面;
(Ⅱ)设,分别为,的中点,求三棱锥的体积.