满分5 > 高中数学试题 >

棋盘上标有第、、、、站,棋子开始位于第站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面...

棋盘上标有第站,棋子开始位于第站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第站或第站时,游戏结束.设棋子位于第站的概率为.

1)当游戏开始时,若抛掷均匀硬币次后,求棋手所走步数之和的分布列与数学期望;

2)证明:

3)求的值.

 

(1)分布列见解析,随机变量的数学期望为;(2)证明见解析; (3),. 【解析】 (1)根据题意得出随机变量的可能取值有、、、,利用独立重复试验的概率公式计算出随机变量在相应取值时的概率,可列出随机变量的分布列,由此计算出随机变量的数学期望; (2)根据题意,棋子要到第站,由两种情况,由第站跳站得到,也可以由第站跳站得到,由此得出,并在该等式两边同时减去,可得出所证等式成立; (3)结合(1)、(2)可得,利用累加法求出数列的通项公式,从而可求出和的值. (1)由题意可知,随机变量的可能取值有、、、. ,, ,. 所以,随机变量的分布列如下表所示: 所以,随机变量的数学期望为; (2)根据题意,棋子要到第站,由两种情况,由第站跳站得到,其概率为 ,也可以由第站跳站得到,其概率为,所以,. 等式两边同时减去得; (3)由(2)可得,,. 由(2)可知,数列是首项为,公比为的等比数列, , , 又,则, 由于若跳到第站时,自动停止游戏,故有.
复制答案
考点分析:
相关试题推荐

中,内角所对的边分别为.已知.

求证:成等差数列;

⑵若,求的值.

 

查看答案

如图,已知双曲线的右顶点为为坐标原点,以为圆心的圆与双曲线的某渐近线交于两点,若,且,则双曲线的离心率为____________

 

查看答案

已知抛物线的焦点为,则的坐标为__________;过点的直线交抛物线两点,若,则的面积为__________

 

查看答案

我们称一个数列是有趣数列,当且仅当该数列满足以下两个条件:

①所有的奇数项满足,所有的偶数项满足

②任意相邻的两项满足.

根据上面的信息完成下面的问题:

i)数列__________有趣数列(填或者不是);

ii)若,则数列__________有趣数列(填或者不是.

 

查看答案

数列满足项和为,且,则的通项公式____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.