给出定理:在圆锥曲线中,是抛物线的一条弦,是的中点,过点且平行于轴的直线与抛物线的交点为.若两点纵坐标之差的绝对值,则的面积,试运用上述定理求解以下各题:
(1)若,所在直线的方程为,是的中点,过且平行于轴的直线与抛物线的交点为,求;
(2)已知是抛物线的一条弦,是的中点,过点且平行于轴的直线与抛物线的交点为,分别为和的中点,过且平行于轴的直线与抛物线分别交于点,若两点纵坐标之差的绝对值,求和;
(3)请你在上述问题的启发下,设计一种方法求抛物线:与弦围成成的“弓形”的面积,并求出相应面积.
设为函数(,为定义域)图像上的一个动点,为坐标原点,为点与点两点间的距离.
(1)若,求的最大值与最小值;
(2)若,是否存在实数,使得的最小值不小于2?若存在,请求出的取值范围;若不存在,则说明理由.
已知函数.
(1)写出函数的最小正周期以及单调递增区间;
(2)在中,角所对的边分别为,若,且,求的值.
如图,已知正方体的棱长为2,分别是、的中点.
(1)求三棱锥的体积;
(2)求异面直线与所成角的大小(结果用反三角函数值表示).
给出下列四个命题:(1)函数的反函数为;(2)函数为奇函数;(3)参数方程所表示的曲线是圆;(4)函数,当时,恒成立.其中真命题的个数为( ).
A.4个 B.3个 C.2个 D.1个
二项式(为虚数单位)的展开式中第8项是( ).
A. B. C. D.