平面内给定三个向量.
(1)求满足的实数m,n;
(2)若,求实数k;
(3)设满足,且,求.
在平面内有三个向量,,,,与的夹角为120°,与的夹角为30°,,设,则_______.
已知非零向量,,且.求:
(1)向量,的夹角;
(2)向量,的夹角.
已知抛物线,过焦点F的直线l与抛物线交于S,T,且.
(1)求抛物线C的方程;
(2)设点P是x轴下方(不含x轴)一点,抛物线C上存在不同的两点A,B满足,其中为常数,且两点D,E均在C上,弦AB的中点为M.
①若点P坐标为,抛物线过点A,B的切线的交点为N,证明:点N在直线MP上;
②若直线PM交抛物线于点Q,求证;为定值(定值用表示).
如图,在直角梯形SABC中,,D为边SC上的点,且,现将沿AD折起到达的位置(折起后点S记为P),并使得.
(1)求证:平面ABCD;
(2)设,
①若点E在线段BP上,且满足,求平面EAC与平面PDC所成的锐二面角的余弦值
②设G是AD的中点,则在内(含边界)是否存在点F,使得平面PBC?若存在,确定点F的位置,若不存在,请说明理由.
已知A,B是焦距为的椭圆的上、下顶点,P是椭圆上异于顶点的任意一点,直线PA,PB的斜率之积为.
(1)求椭圆的方程;
(2)若C,D分别是椭圆的左、右顶点,动点M满足,连接CM交椭圆于点E,试问:x轴上是否存在定点T,使得恒成立?若存在,求出点T坐标,若不存在,请说明理由.