已知,,求的取值范围.
设个正数依次围成一个圆圈,其中是公差为的等差数列,而是公比为的等比数列.
(1)若,求数列的所有项的和;
(2)若,求的最大值;
(3)当时是否存在正整数,满足?若存在,求出值;若不存在,请说明理由.
已知函数,.
(1)当时,判断的奇偶性,并说明理由;
(2)当,时,若,求的值;
(3)若,且对任意不等式恒成立,求实数的取值范围.
已知的顶点在椭圆上,在直线上,且.
(Ⅰ)当边通过坐标原点时,求的长及的面积;
(Ⅱ)当,且斜边的长最大时,求所在直线的方程.
如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运行的速度为130m/min,山路AC长为1260m,经测量,.
(1)求索道AB的长;
(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
如图,四棱锥中,底面为正方形,面,,.
(1)求异面直线与所成角;
(2)求点到平面的距离.