将一枚质地均匀的硬币连掷次,设事件“恰好两次正面朝上”,
(1)直接计算事件的概率;
(2)利用计算器或计算机模拟试验80次,计算事件发生的频率.
在一次奥运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4.利用计算机模拟试验,估计甲获得冠军的概率.
从你所在班级任意选出6名同学,调查他们的出生月份,假设出生在一月,二月……十二月是等可能的.设事件“至少有两人出生月份相同”,设计一种试验方法,模拟20次,估计事件发生的概率.
定义在上的函数,如果对任意,恒有成立,则称为阶缩放函数.
(1)已知函数为二阶缩放函数,且当时,,求的值;
(2)已知函数为二阶缩放函数,且当时,,求证:函数在上无零点;
(3)已知函数为阶缩放函数,且当时, 的取值范围是,求在上的取值范围.
设数列的前项和为.若对任意的正整数,总存在正整数,使得,则称是“数列”.
(1)若数列的前项和为,证明:是“数列”.
(2)设是等差数列,其首项,公差,若是“数列”,求的值;
(3)证明:对任意的等差数列,总存在两个“数列”和,使得成立.
已知函数,且函数的图象与函数的图象关于直线对称.
(1)若存在,使等式成立,求实数m的最大值和最小值
(2)若当时不等式恒成立,求a的取值范围.