小张经营某一消费品专卖店,已知该消费品的进价为每件40元,该店每月销售量(百件)与销售单价x(元/件)之间的关系用下图的一折线表示,职工每人每月工资为1000元,该店还应交付的其它费用为每月10000元.
(1)把y表示为x的函数;
(2)当销售价为每件50元时,该店正好收支平衡(即利润为零),求该店的职工人数;
(3)若该店只有20名职工,问销售单价定为多少元时,该专卖店可获得最大月利润?(注:利润=收入-支出)
已知二次函数f(x)满足f(x)=f(2-x),且f(1)=6,f(3)=2.
(1)求f(x)的解析式
(2)是否存在实数m,使得在[-1,3]上f(x)的图象恒在直线y=2mx+1的上方?若存在,求m的取值范围;若不存在,说明理由.
已知函数f(x)是定义在R上的偶函数,当时,,现已画出函数在y轴左侧的图象,如图所示,请根据图象.
(1)将函数的图象补充完整,并写出函数的递增区间;
(2)写出函数的解析式;
(3)若函数,求函数的最小值.
已知函数是上的偶函数.
(1)求实数的值;
(2)判断并用定义法证明函数在上的单调性
已知幂函数为偶函数.
(1)求的解析式;
(2)若在上不是单调函数,求实数的取值范围.
符号[x]表示不超过x的最大整数,如[e]=2,[π]=3,[-1.2]=-2,定义函数{x}=x-[x]给出下列四个结论:
①函数{x}的定义域是R,值域为[0,1]
②方程{x}=有无数个解;
③函数{x}是奇函数;
④函数{x}是增函数,
其中正确结论的序号是____(写出所有正确结论的序号)