在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系.直线的极坐标方程为.
(1)求和的直角坐标方程;
(2)已知与相切,求的值.
已知函数.
(1)讨论的单调性;
(2)若函数有三个极值点,,,求实数的取值范围,并证明.
已知,是椭圆:的左右两个焦点,过的直线与交于,两点(在第一象限),的周长为8,的离心率为.
(1)求的方程;
(2)设,为的左右顶点,直线的斜率为,的斜率为,求的取值范围.
如图,四棱锥中,底面为矩形,平面,,分别为,的中点.
(1)证明:平面;
(2)若与平面所成的角为,,求点到平面的距离.
如图,在平面四边形中,,,且.
(1)若,求的值;
(2)求四边形面积的最大值.
一研学实践活动小组利用课余时间,对某公司1月份至5月份销售某种产品的销售量及销售单价进行了调查,月销售单价(单位:元)和月销售量(单位:百件)之间的一组数据如下表所示:
月份 | 1 | 2 | 3 | 4 | 5 |
月销售单价(元) | 1.6 | 1.8 | 2 | 2.2 | 2.4 |
月销售量(百件) | 10 | 8 | 7 | 6 | 4 |
(1)根据1至5月份的数据,求出关于的回归直线方程;
(2)预计在今后的销售中,月销售量与月销售单价仍然服从(1)中的关系,若该种产品的成本是1元/件,那么该产品的月销售单价应定为多少元才能获得最大月利润?(注:利润=销售收入-成本)
(回归直线方程,其中.参考数据:,)