如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.
(1)证明:MN∥平面C1DE;
(2)求点C到平面C1DE的距离.
设α,β为两个平面,则α∥β的充要条件是
A. α内有无数条直线与β平行
B. α内有两条相交直线与β平行
C. α,β平行于同一条直线
D. α,β垂直于同一平面
如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )
A. B.
C. D.
对于无穷数列,,若-…,则称是的“收缩数列”.其中,,分别表示中的最大数和最小数.已知为无穷数列,其前项和为,数列是的“收缩数列”.
(1)若,求的前项和;
(2)证明:的“收缩数列”仍是;
(3)若,求所有满足该条件的.
已知函数的定义域为,设,.
(Ⅰ)试确定t的取值范围,使得函数在上为单调函数;
(Ⅱ)求证:;
(Ⅲ)求证:对于任意的,总存在,满足,又若方程在上有唯一解,请确定t的取值范围.
已知函数,.
Ⅰ讨论函数的单调区间;
Ⅱ若函数在处取得极值,对,恒成立,求实数b的取值范围.