设a为实数,函数f(x)=x2+|x-a|+1,x∈R.
(1)讨论f(x)的奇偶性;
(2)求f(x)的最小值.
设函数,若互不相等的实数,,,使得,则的取值范围是( ).
A. B.
C. D.
已知椭圆的离心率为,焦距为,斜率为k的直线l与椭圆M有两个不同的交点A、B.
(1)求椭圆M的方程;
(2)设P(﹣2,0),直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D,若C、D与点共线,求斜率k的值.
已知函数.
(1)讨论的单调性;
(2)当时,记在区间的最大值为,最小值为,求的取值范围.
四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,侧面PAD⊥底面ABCD,∠BCD=60°,,E是BC中点,点Q在侧棱PC上.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)若Q是PC中点,求二面角E﹣DQ﹣C的余弦值;
(Ⅲ)是否存在Q,使PA∥平面DEQ?若存在,求出的值;若不存在,说明理由.
空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
日均浓度 | ||||||
空气质量级别 | 一级 | 二级 | 三级 | 四级 | 五级 | 六级 |
空气质量类型 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
甲、乙两城市2013年2月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:
(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)
(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;
(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.