的内切圆与三边的切点分别为,已知,内切圆圆心,设点A的轨迹为R.
(1)求R的方程;
(2)过点C的动直线m交曲线R于不同的两点M,N,问在x轴上是否存在一定点Q(Q不与C重合),使恒成立,若求出Q点的坐标,若不存在,说明理由.
如图,在四棱柱中,侧棱底面,,,,,,,()
(1)求证:平面;
(2)若直线与平面所成角的正弦值为,求的值;
(3)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式.(直接写出答案,不必说明理由)
关于的不等式 的解集为
求实数的值
若,且为纯虚数,求的值
长度分别为、的六条线段能成为同一个四面体的六条棱的充要条件是( )
A. B.
C. D.
在约束条件下,当时,目标函数的最大值的变化范围是( )
A. B. C. D.
设直线系(),则下列命题中是真命题的个数是( )
①存在一个圆与所有直线相交;
②存在一个圆与所有直线不相交;
③存在一个圆与所有直线相切;
④中所有直线均经过一个定点;
⑤不存在定点不在中的任一条直线上;
⑥对于任意整数,存在正边形,其所有边均在中的直线上;
⑦中的直线所能围成的正三角形面积都相等.
A.3 B.4 C.5 D.6