已知,是实常数.
(1)当时,判断函数的奇偶性,并给出证明;
(2)若是奇函数,不等式有解,求的取值范围.
已知圆,直线
(1)求证:直线过定点;
(2)求直线被圆所截得的弦长最短时的值;
(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.
如图,为方便市民游览市民中心附近的“网红桥”,现准备在河岸一侧建造一个观景台,已知射线,为两边夹角为的公路(长度均超过千米),在两条公路,上分别设立游客上下点,,从观景台到,建造两条观光线路,,测得千米,千米.
(1)求线段的长度;
(2)若,求两条观光线路与之和的最大值.
在中,内角所对的边分别为.已知,,.
(Ⅰ)求和的值;
(Ⅱ)求的值.
如图,三棱柱,底面,且为正三角形,,,为中点.
(1)求证:直线平面;
(2)求二面角的大小.
某校高一年级有学生480名,对他们进行政治面貌和性别的调查,其结果如下:
性别 | 团员 | 群众 |
男 | 80 | |
女 | 180 |
(1)若随机抽取一人,是团员的概率为,求,;
(2)在团员学生中,按性别用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名团员中任选2人,求两人中至多有1个女生的概率.