求不等式的解集.
已知椭圆C:()的短轴长为2,离心率为
(1)求椭圆C的方程
(2)若过点M(2,0)的引斜率为的直线与椭圆C相交于两点G、H,设P为椭圆C上一点,且满足(O为坐标原点),当时,求实数的取值范围?
已知函数 ,
(1)求 的图象在 处的切线方程并求函数 的单调区间;
(2)求证: .
已知离心率为 的椭圆(a>b>0)过点M(,1).
(1)求椭圆的方程.
(2)已知与圆x2+y2=相切的直线l与椭圆C相交于不同两点A,B,O为坐标原点,求的值.
已知函数.
(1)若是的极值点,求及在上的最大值;
(2)若函数是上的单调递增函数,求实数的取值范围.
某初级中学共有学生2000名,各年级男生、女生人数如表: 已知在全校学生中随机抽取1名,抽到的是初二年级女生的概率是0.19.
| 初一年级 | 初二年级 | 初三年级 |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
(1)求x的值.
(2)现用分层抽样法在全校抽取48名学生,问应在初三年级学生中抽取多少名?
(3)已知y≥245,z≥245,求初三年级女生比男生多的概率.