已知正数,,满足等式.
证明:(1);
(2).
在直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,点的极坐标为,曲线的极坐标方程为.
(1)写出直线的普通方程和曲线的直角坐标方程;
(2)若点为曲线上的动点,求中点到直线的距离的最小值
已知函数,.
(1)讨论的单调性;
(2)是否存在,,使得函数在区间的最小值为且最大值为?若存在,求出,的所有值;若不存在,请说明理由.
参考数据:.
过的直线与抛物线交于,两点,以,两点为切点分别作抛物线的切线,,设与交于点.
(1)求;
(2)过,的直线交抛物线于,两点,求四边形面积的最小值.
图1是由正方形,直角梯形,三角形组成的一个平面图形,其中,,将其沿,折起使得与重合,连接,如图2.
(1)证明:图2中的,,,四点共面,且平面平面;
(2)求图2中的二面角的大小.
已知在中,,.
(1)求的值;
(2)若,的平分线交于点,求的长.