满分5 > 高中数学试题 >

对定义在[0,1]上,并且同时满足以下两个条件的函数f(x)称为G函数. ①对任...

对定义在[01]上,并且同时满足以下两个条件的函数fx)称为G函数.

对任意的x∈[01],总有fx≥0

x1≥0x2≥0x1+x2≤1时,总有fx1+x2≥fx1+fx2)成立.已知函数gx=x2hx=2xb是定义在[01]上的函数.

1)试问函数gx)是否为G函数?并说明理由;

2)若函数hx)是G函数,求实数b组成的集合.

 

(1)见解析;(2)b∈{1} 【解析】 (1)是,理由如下: 当x∈[0,1]时,总有g(x)=x2≥0,满足①, 当x1≥0,x2≥0,x1+x2≤1时, g(x1+x2)=(x1+x2)2=x12+x22+2x1x2≥x12+x22=g(x1)+g(x2),满足② (2)h(x)=2x﹣b为增函数,h(x)≥h(0)=1﹣b≥0, ∴b≤1, 由h(x1+x2)≥h(x1)+h(x2),﹣b+﹣b, 即b≥1﹣(﹣1)(﹣1), ∵x1≥0,x2≥0,x1+x2≤1, ∴0≤﹣1≤1,0≤﹣1≤1,x1,x2不同时等于1 ∴0≤(﹣1)(﹣1)<1; ∴0<1﹣(﹣1)(﹣1)≤1, 当x1=x2=0时,1﹣(﹣1)(﹣1)的最大值为1; ∴b≥1,则b=1, 综合上述:b∈{1}
复制答案
考点分析:
相关试题推荐

设函数是定义域为R的奇函数.

k值;

,试判断函数单调性并求使不等式恒成立的t的取值范围;

,且上的最小值为,求m的值.

 

查看答案

已知函数.

1)当时,判断上的单调性并证明;

2)若对任意,不等式恒成立,求的取值范围;

3)讨论函数的零点个数.

 

查看答案

某民营企业生产AB两种产品,根据市场调查与预测,A产品的利润y与投资x成正比,其关系如图甲,B产品的利润y与投资x的算术平方根成正比,其关系如图乙注:利润与投资单位为万元   

分别将AB两种产品的利润y表示为投资x的函数关系式;

该企业已筹集到10万元资金,并全部投入AB两种产品的生产问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润是多少万元?

 

查看答案

设函数的定义域为,使得有意义的的集合为.

1)求

2)若,求实数的取值范围.

 

查看答案

在函数 的图象上有一点,此函数与x轴、直线围成图形如图阴影部分的面积为S,则St的函数关系图可表示为(    )

A. B. C. D.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.