设,,则( )
A. B.
C. D.
已知函数.
(1)解不等式;
(2)若恒成立,求a的取值范围.
在直角坐标系中,是过定点且倾斜角为的直线,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为.
(1)求直线的参数方程与曲线C的直角坐标方程;
(2)若曲线C与直线l相交于M,N两点,求的取值范围.
函数.
(1)求的单调区间;
(2)在函数的图象上取两个不同的点,令直线AB的斜率
为k,则在函数的图象上是否存在点,且,使得?若存
在,求A,B两点的坐标,若不存在,说明理由.
已知椭圆的焦距为2,过点.
(1)求椭圆的标准方程;
(2)设椭圆的右焦点为F,定点,过点F且斜率不为零的直线l与椭圆交于A,B两点,以线段AP为直径的圆与直线的另一个交点为Q,证明:直线BQ恒过一定点,并求出该定点的坐标.
已知C是以AB为直径的圆周上一点,平面.
(1)求证:平面平面;
(2)若异面直线PB与AC所成的为,求二面角的余弦值.