如图,已知点F(1,0)为抛物线y2=2px(p>0)的焦点,过点F的直线交抛物线于A、B两点,点C在抛物线上,使得△ABC的重心G在x轴上.
(1)求p的值及抛物线的准线方程 ;
(2)求证:直线OA与直线BC的倾斜角互补;
(3)当xA∈(1,2)时,求△ABC面积的最大值.
已知数列{an}中,相邻两项an,an+1是关于x的方程:x2+3nx+bn0(n∈N*)的两实根,且a1=1.
(1)若Sn为数列{an}的前n项和,求S100 ;
(2)求数列{an}和{bn}的通项公式.
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
已知函数,该函数在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.
(1)求的值;
(2)若,,求的值.
已知,向量满足,设与的夹角为θ,则的最小值为_____.
在△ABC中,∠ABC为直角,点M在线段BA上,满足BM=2MA=2,记∠ACM=θ,若对于给定的θ,这样的△ABC是唯一确定的,则BC=_____.