求证:
(1);
(2).
某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:
①若,则奖励玩具一个;
②若,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.
(Ⅰ)求小亮获得玩具的概率;
(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.
(1)若以表示和为6的事件,求;
(2)现连玩三次,若以表示甲至少赢一次的事件,表示乙至少赢两次的事件,试问与是否为互斥事件?为什么?
(3)这种游戏规则公平吗?试说明理由.
设有外形完全相同的两个箱子,甲箱中有99个白球,1个黑球,乙箱中有1个白球,99个黑球.随机地抽取一箱,再从取出的一箱中抽取一球,结果取得白球,我们可以认为这球是从_____箱中取出的.
某班某次测验,全班53人中,有83%的人及格,则从该班中任抽出11人,仅有1人及格.你认为这件事可能吗?答______(填“可能”或“不可能”).
调查运动员服用兴奋剂的时候,应用Warner随机化应答方法调查300名运动员,得到80个“是”的回答,由此,我们估计服用过兴奋剂的人占这群人中回答此问题人的( )
A.3.33% B.53% C.5% D.26%