已知函数为奇函数.
(1)求实数的值;
(2)判断并证明函数的单调性;
(3)若存在,使得函数在区间上的值域为,求实数的取值范围.
某学习小组在一次研究性学习中发现,以下三个式子的值都等于同一个常数.
;
;
.
(1)求出这个常数;
(2)结合(1)的结果,将该小组的发现推广为一个三角恒等式,并证明你的结论.
已知函数的部分图象如图所示.
(1)求函数的表达式;
(2)将函数的图象向左平移个单位长度得到函数的图象,若关于的方程在上有实数解,求实数的取值范围.
科技创新在经济发展中的作用日益凸显.某科技公司为实现9000万元的投资收益目标,准备制定一个激励研发人员的奖励方案:当投资收益达到3000万元时,按投资收益进行奖励,要求奖金(单位:万元)随投资收益(单位:万元)的增加而增加,奖金总数不低于100万元,且奖金总数不超过投资收益的20%.
(1)现有三个奖励函数模型:①,②,③,.试分析这三个函数模型是否符合公司要求?
(2)根据(1)中符合公司要求的函数模型,要使奖金额达到350万元,公司的投资收益至少要达到多少万元?
已知角的顶点与坐标原点重合,始边与轴非负半轴重合,终边过点.
(1)求的值;
(2)已知,且,求的值.
求下列各式的值:
(1)
(2)