若双曲线的离心率为,则其渐近线方程为( ).
A. B. C. D.
已知命题P:,则为( )
A. B.
C. D.
已知项数为的数列满足如下条件:①;②.若数列满足,其中,则称为的“伴随数列”.
(1)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;
(2)若为的“伴随数列”,证明:;
(3)已知数列存在“伴随数列”,且,,求m的最大值.
已知函数.
(1)求曲线在点处的切线方程;
(2)求函数零点的个数.
已知椭圆C:的长轴长为4,离心率为,点P在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知点M (4,0),点N(0,n),若以PM为直径的圆恰好经过线段PN的中点,求n的取值范围.
如图,在四棱锥S-ABCD中,底面ABCD为直角梯形,AD//BC,∠SAD =∠DAB= ,SA=3,SB=5,,,.
(1)求证:AB平面SAD;
(2)求平面SCD与平面SAB所成的锐二面角的余弦值;
(3)点E,F分别为线段BC,SB上的一点,若平面AEF//平面SCD,求三棱锥B-AEF的体积.