近年来,家用冰箱使用的氟化物的释放等破坏了臭氧层,臭氧含量Q与时间1(单位:年)的关系为,其中是臭氧的初始含量.
(1)随时间的增加,臭氧的含量是增加还是减少?
(2)多久以后将会有一半的臭氧消失(精确到1年)?
按照《国务院关于印发“十三五”节能减排综合工作方案的通知》(国发[2016〕74号)的要求,到2020年,全国化学需氧量排放总量要控制在2001万吨以内,要比2015年下降10%假设“十三五”期间每一年化学需氧量排放总量下降的百分比都相等,2015年后第年的化学需氧量排放总量最大值为万吨.
(1)求的解析式;
(2)求2019年全国化学需氧量排放总量要控制在多少万吨以内(精确到1万吨).
据报道,青海湖的湖水量在最近50年内减少了10%,如果按此规律(即每50年减少10%),设2010年的湖水量为m,从2010年起过x年后湖水量为y试写出y与x的函数关系式.
“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的城市和交通拥堵严重的城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:
(1)根据茎叶图,比较两城市满意度评分的平均值的大小(不要求计算具体值,给出结论即可);
(2)若得分不低于85分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此列联表,并据此样本分析是否有的把握认为城市拥堵与认可共享单车有关;
| 合计 | ||
认可 |
|
|
|
不认可 |
|
|
|
合计 |
|
|
|
(3)若此样本中的城市和城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自城市的概率是多少?
(参考公式:)
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(1)已知,且,求的最小值.
(2)已知是正数,且满足,求的最小值.
命题;命题
(1)若时,在上恒成立,求实数a的取值范围;
(2)若p是q的充分必要条件,求出实数a,b的值