已知函数f(x),g(x)=|xlnx﹣ax2|,a.
(1)讨论f(x)的单调性;
(2)若g(x)在区间(1,e)有极小值,求a的取值范围.
已知点P(1,2)在抛物线C:y2=2px(p>0)上.
(Ⅰ)求C的方程;
(Ⅱ)斜率为﹣1的直线与C交于异于点P的两个不同的点M,N,若直线PM,PN分别与x轴交于A,B两点,求证:△PAB为等腰三角形.
某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从四所高校中选2所.
(Ⅰ)求甲、乙、丙三名同学都选高校的概率;
(Ⅱ)若已知甲同学特别喜欢高校,他必选校,另在三校中再随机选1所;而同学乙和丙对四所高校没有偏爱,因此他们每人在四所高校中随机选2所.
(ⅰ)求甲同学选高校且乙、丙都未选高校的概率;
(ⅱ)记为甲、乙、丙三名同学中选校的人数,求随机变量的分布列及数学期望.
如图,在六棱锥P﹣ABCDEF中,六边形ABCDEF为正六边形,平面PAB⊥平面ABCDEF,AB=1,PA,PB=2.
(1)求证:PA⊥平面ABCDEF;
(2)求直线PD与平面PAE所成角的正弦值.
已知数列{an}为等差数列,a1=1,前n项和为Sn,数列{bn}为等比数列,b1>1,公比为2,且b2S3=54,b3+S2=16.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=an+bn,求数列{cn}的前n项和Tn.
已知函数f(x)=()|x|,若函数g(x)=f(x﹣1)+a(ex﹣1+e﹣x+1)存在最大值M,则实数a的取值范围为_____