随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.
年份 | 网民人数 | 互联网普及率 | 手机网民人数 | 手机网民普及率 |
2009 | ||||
2010 | ||||
2011 | ||||
2012 | ||||
2013 | ||||
2014 | ||||
2015 | ||||
2016 | ||||
2017 | ||||
2018 |
(互联网普及率(网民人数/人口总数)×100%;手机网民普及率(手机网民人数/人口总数)×100%)
(Ⅰ)从这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;
(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记为手机网民普及率超过50%的年数,求的分布列及数学期望;
(Ⅲ)若记年中国网民人数的方差为,手机网民人数的方差为,试判断与的大小关系.(只需写出结论)
已知函数.
(Ⅰ)求的最小正周期;
(Ⅱ)若在上单调递增,求的最大值.
已知函数其中.①若,则的最小值为______;②关于的函数有两个不同零点,则实数的取值范围是______.
筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图1).因其经济又环保,至今还在农业生产中得到使用(如图2).假定在水流量稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.因筒车上盛水筒的运动具有周期性,可以考虑利用三角函数模型刻画盛水筒(视为质点)的运动规律.将筒车抽象为一个几何图形,建立直角坐标系(如图3).设经过t秒后,筒车上的某个盛水筒从点P0运动到点P.由筒车的工作原理可知,这个盛水筒距离水面的高度H(单位: ),由以下量所决定:筒车转轮的中心O到水面的距离h,筒车的半径r,筒车转动的角速度ω(单位: ),盛水筒的初始位置P0以及所经过的时间t(单位: ).已知r=3,h=2,筒车每分钟转动(按逆时针方向)1.5圈, 点P0距离水面的高度为3.5,若盛水筒M从点P0开始计算时间,则至少需要经过_______就可到达最高点;若将点距离水面的高度表示为时间的函数,则此函数表达式为_________.
图1 图2 图3
在中,,则_______.
若小明在参加理、化、生三门课程的等级性考试中,取得等级的概率均为,且三门课程的成绩是否取得等级互不影响.则小明在这三门课程的等级性考试中恰有两门取得等级的概率为_______.