在直角坐标系中,已知圆与直线相切,点A为圆上一动点,轴于点N,且动点满足,设动点M的轨迹为曲线C.
(1)求曲线C的方程;
(2)设P,Q是曲线C上两动点,线段的中点为T,,的斜率分别为,且,求的取值范围.
如图,在四棱锥中,平面,四边形为菱形,,,E,F分别为,的中点.
(1)求证:平面;
(2)点G是线段上一动点,若与平面所成最大角的正切值为,求二面角的余弦值.
已知在等比数列{an}中,=2,,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{bn}的前n项和
已知a,b,c分别为三个内角A,B,C的对边,.
(1)求A;
(2)若,求周长的取值范围.
如图,矩形中,,为边的中点,将沿直线翻转成,构成四棱锥,若为线段的中点,在翻转过程中有如下四个命题:①平面;②存在某个位置,使;③存在某个位置,使;④点在半径为的圆周上运动,其中正确的命题是__________.
已知双曲线的左右焦点分别为,若上一点满足,且,则双曲线的渐近线方程为__________.