全球变暖使某地冬季冰雪覆盖面积在最近50年内减少了5%,已如2018年该地的冬季冰雪履盖面积为m,如果按此速度,从2018年起,经过x年后,该地冬季冰雪覆盖面积y与x的函数关系式是( )
A. B. C. D.
函数,的图像如图所示.
(1)试根据函数的增长差异指出,,分别对应的函数;
(2)以两图像交点为分界点,对,的大小进行比较.
某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,之后增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润与时间的关系,可选用
A.一次函数 B.二次函数
C.指数型函数 D.对数型函数
某工厂在两年内生产产值的月增长率都是a,则第二年某月的生产产值与第一年相应月相比增长了第一年相应月的______.
某地区不同身高的未成年男性的体重平均值如下表.
身高/ | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 |
体重/ | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 | 17.50 | 20.92 | 26.86 | 31.11 | 38.85 | 47.25 | 55.05 |
(1)根据表格提供的数据,能否建立恰当的函数模型,使它能比较近似地反映这个地区未成年男性体重与身高的函数关系?试写出这个函数模型的关系式.
(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高为,体重为的在校男生的体重是否正常?
某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖励金额y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:,,,其中哪个模型能符合公司的要求?