已知椭圆的中心在原点,焦点在轴上,离心率等于,它的一个顶点恰好在抛物线的准线上.
求椭圆的标准方程;
点,在椭圆上,是椭圆上位于直线两侧的动点当运动时,满足,试问直线的斜率是否为定值,请说明理由.
设椭圆方程为,过点的直线l交椭圆于点A,B,O是坐标原点,点P满足,点N的坐标为,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)的最小值与最大值.
如图,线段AB过x轴正半轴上一定点,端点A,B到x轴距离之积为2m,以x轴为对称轴,过A,O,B三点作抛物线.
(1)求抛物线方程;
(2)若,求m的值.
已知椭圆C的左、右焦点坐标分别是 (,0), (,0),离心率是,直线y=t椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若圆P与x轴相切,求圆心P的坐标.
已知直线被抛物线()截得的弦长为,求抛物线的标准方程.
中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点、,且,椭圆的长半轴与双曲线的半实轴之差为4,离心率之比为3∶7,求这两条曲线的方程.