在
中,D,E是AB,AC上一点,
且
,设
,试用基底
表示向量
.
如图,平行四边形ABCD的两条对角线相交于点
,且
.试用基底
表示
.

在数列
中,若
是正整数,且
,
,则称
为“D-数列”.
(1)举出一个前六项均不为零的“D-数列”(只要求依次写出该数列的前六项);
(2)若“D-数列”
中,
,
,数列
满足
,
,分别判断当
时,
与
的极限是否存在?如果存在,求出其极限值(若不存在不需要交代理由);
(3)证明:任何“D-数列”中总含有无穷多个为零的项.
如图,在平面直角坐标系
中,过
轴正方向上一点
任作一直线,与抛物线
相交于
两点,一条垂直于
轴的直线分别与线段
和直线
交于点
.

(1)若
,求
的值;
(2)若
为线段
的中点,求证:直线
与该抛物线有且仅有一个公共点.
(3)若直线
的斜率存在,且与该抛物线有且仅有一个公共点,试问
是否一定为线段
的中点?说明理由.
已知
.
(1)当
,
时,若不等式
恒成立,求
的范围;
(2)试判断函数
在
内零点的个数,并说明理由.
某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,
(
为圆柱的高,为球的半径,
).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为
千元,半球形部分每平方米建造费用为
千元.设该储油罐的建造费用为
千元.

(1) 写出
关于
的函数表达式,并求该函数的定义域;
(2) 若预算为
万元,求所能建造的储油罐中
的最大值(精确到
),并求此时储油罐的体积
(单位: 立方米,精确到
立方米).
