在四棱锥中,平面平面,为等边三角形,,,,点是的中点.
(1)求证:平面;
(2)求二面角的余弦值.
某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.
(1)求图中x的值;
(2)求这组数据的平均数和中位数;
(3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.
已知(其中,均为常数).
(1)若,求函数的单调区间;
(2)若且,求过点且与曲线相切的直线的方程.
在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB.
(1)求角B的大小;
(2)若b=3,sinC=2sinA,求a,c的值
已知数列{an}为等差数列,其中a2+a3=8,a5=3a2.
(1)求数列{an}的通项公式;
(2)记,求{}的前n项和Sn.
设,分别是椭圆的左右焦点,为椭圆上任意-一点,点的坐标为,则的最大值为__________.