为了了解学生的课业负担,甲、乙两所学校分别抽取了200名在校生,了解他们完成作业所需的时间,并分别作出了频数分布直方图如图(1)(2)所示,其中分组的区间都为,,,,.记甲学校所得数据的中位数为x,乙学校所得数据的中位数为y,判断x与y的相对大小.
(1) (2)
已知函数f(x)=ax+blnx(a,b∈R)在点(1,f(1))处的切线方程为yx﹣1.
(1)求a、b的值;
(2)当x>1时,f(x)0恒成立,求实数k的取值范围;
(3)设g(x)=exx,求证:对于x∈(0,+∞),g(x)﹣f(x)>2恒成立.
已知椭圆C:l(a>b>0)经过点(,1),且离心率e.
(1)求椭圆C的方程;
(2)若直线l与椭圆C相交于A、B两点,且满足∠AOB=90°(O为坐标原点),求|AB|的取值范围.
已知等差数列{an}中,a4+a7=20,且前9项和S9=81.
(1)求数列{an}的通项公式;
(2)求数列的前n项和Tn.
如图,四边形ABCD为直角梯形,BC∥AD,∠BAD=90°,BC=2,AD=3,四边形ABEF为平行四边形,AB=1,BE=2,∠EBA=60°,平面ABEF⊥平面ABCD.
(1)求证:AE⊥平面ABCD;
(2)求平面ABEF与平面FCD所成锐二面角的余弦值.
某学校为了学生的健康,对课间操活动做了如下规定:课间操时间若有雾霾则停止课间操,若无雾霾则组织课间操.预报得知,在未来一周从周一到周五的课间操时间出现雾霾的概率是:前3天均为,后2天均为,且每一天出现雾霾与否是相互独立的.
(1)求未来5天至少一天停止课间操的概率;
(2)求未来5天组织课间操的天数X的分布列和数学期望.