设函数.
(1)若不等式对恒成立,求的值;
(2)若在内有两个极值点,求负数的取值范围;
(3)已知,,若对任意实数,总存在正实数,使得成立,求正实数的取值集合.
已知数列的前项和为,满足,且.正项数列满足,其前7项和为42.
(1)求数列和的通项公式;
(2)令,数列的前项和为,若对任意正整数,都有,求实数的取值范围;
(3)将数列,的项按照“当为奇数时,放在前面;当为偶数时,放在前面”的要求进行排列,得到一个新的数列:,,,,,,,,,,,…,求这个新数列的前项和.
在平面直角坐标系中,已知、分别为椭圆的左、右焦点,且椭圆经过点和点,其中为椭圆的离心率.
(1)求椭圆的标准方程;
(2)过点的直线交椭圆于另一点,点在直线上,且,若,求直线的斜率.
如图,在三棱锥中,底面,.点、、分别为棱、、的中点,是线段的中点,,.
(1)求证:平面;
(2)求二面角的正弦值;
(3)已知点在棱上,且直线与直线所成角的余弦值为,求线段的长.
△ABC的内角A,B,C的对边分别为a,b,c,已知,,b=2.
(1)求c;
(2)设D为BC边上一点,且,求△ABD的面积.
在平行四边形中,,,,为的中点,若是线段上一动点,则的取值范围是________