城镇化是国家现代化的重要指标,据有关资料显示,1978—2013年,我国城镇常住人口从1.7亿增加到7.3亿.假设每一年城镇常住人口的增加量都相等,记1978年后第t(限定)年的城镇常住人口为亿.写出的解析式,并由此估算出我国2017年的城镇常住人口数.
为了鼓励大家节约用水,自2013年以后,上海市实行了阶梯水价制度,其中每户的综合用水单价与户年用水量的关系如下表所示.
分档 | 户年用水量 | 综合用水单价/(元·) |
第一阶梯 | 0220(含) | 3.45 |
第二阶梯 | 220300(含) | 4.83 |
第三阶梯 | 300以上 | 5.83 |
记户年用水量为时应缴纳的水费为元.
(1)写出的解析式;
(2)假设居住在上海的张明一家2015年共用水,则张明一家2015年应缴纳水费多少元?
已知函数.
(1)求不等式的解集;
(2)若不等式对任意恒成立,求实数a的取值范围.
在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,直线l的参数方程为:(t为参数),直线l与曲线C分别交于两点.
(1)写出曲线C和直线l的普通方程;
(2)若点,求的值.
已知函数.
(1)求的单调区间与极值;
(2)当函数有两个极值点时,求实数a的取值范围.
已知抛物线的焦点为F,点,点B在抛物线C上,且满足(O为坐标原点).
(1)求抛物线C的方程;
(2)过焦点F任作两条相互垂直的直线l与l,直线l与抛物线C交于P,Q两点,直线l与抛物线C交于M,N两点,的面积记为,的面积记为,求证:为定值.