是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与的浓度是否相关,现采集到某城市周一至周五某时间段车流量与浓度的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量(万辆) | 50 | 51 | 54 | 57 | 58 |
的浓度(微克/立方米) | 39 | 40 | 42 | 44 | 45 |
(1)根据上表数据,求出这五组数据组成的散点图的样本中心坐标;
(2)用最小二乘法求出关于的线性回归方程;
(3)若周六同一时间段车流量是100万辆,试根据(2)求出的线性回归方程预测,此时的浓度是多少?
(参考公式:,)
如图,边长为4的正方形中,点,分别为,的中点.将,,分别沿,,折起,使,,三点重合于.
(1)求证:平面;
(2)求二面角的余弦值.
某学校为了解高二学生学习效果,从高二第一学期期中考试成绩中随机抽取了25名学生的数学成绩(单位:分),发现这25名学生成绩均在90~150分之间,于是按,,…,分成6组,制成频率分布直方图,如图所示:
(1)求的值;
(2)估计这25名学生数学成绩的平均数;
(3)为进一步了解数学优等生的情况,该学校准备从分数在内的同学中随机选出2名同学作为代表进行座谈,求这两名同学分数在不同组的概率.
已知三个顶点的坐标分别为,,,线段的垂直平分线为.
(1)求直线的方程;
(2)点在直线上运动,当最小时,求此时点的坐标.
直角梯形如图放置,已知,,,.现将梯形绕直线旋转一周形成几何体.
(1)画出这个几何体的正视图(不写作法);
(2)求这个几何体的体积.
甲乙两艘轮船都要在某个泊位停靠8个小时,假定它们在一昼夜的时间段内随机地到达,则两船中有一艘在停靠泊位时、另一艘船必须等待的概率为______.