满分5 > 高中数学试题 >

如图1,在等腰中,,,分别为,的中点,为的中点,在线段上,且。将沿折起,使点到的...

如图1,在等腰中,分别为的中点,的中点,在线段上,且。将沿折起,使点的位置(如图2所示),且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值

 

(1)证明见解析 (2) 【解析】 (1)要证明线面平行,需证明线线平行,取的中点,连接,根据条件证明,即; (2)以为原点,所在直线为轴,过作平行于的直线为轴,所在直线为轴,建立空间直角坐标系,求两个平面的法向量,利用法向量求二面角的余弦值. (1)证明:取的中点,连接. ∵,∴为的中点. 又为的中点,∴. 依题意可知,则四边形为平行四边形, ∴,从而. 又平面,平面, ∴平面. (2),且, 平面,平面, , ,且, 平面, 以为原点,所在直线为轴,过作平行于的直线为轴,所在直线为轴,建立空间直角坐标系,不妨设, 则,,,,, ,,,. 设平面的法向量为, 则,即, 令,得. 设平面的法向量为, 则,即, 令,得. 从而, 故平面与平面所成锐二面角的余弦值为.
复制答案
考点分析:
相关试题推荐

某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.

购买金额(元)

人数

10

15

20

15

20

10

 

1)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.

 

不少于60

少于60

合计

 

40

 

18

 

 

合计

 

 

 

 

2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为(每次抽奖互不影响,且的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15.若游客甲计划购买80元的土特产,请列出实际付款数(元)的分布列并求其数学期望.

附:参考公式和数据:.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

 

 

 

查看答案

设函数abc分别为内角ABC的对边.已知.

1)若,求B

2)若,求的面积.

 

查看答案

在数列中,,且

1的通项公式为________

2)在   2019项中,被10除余2的项数为________.

 

查看答案

已知函数,且,则的值为_____.

 

查看答案

根据记载,最早发现勾股定理的人应是我国西周时期的数学家商高,商高曾经和周公讨论过345”的问题.现有满足345”,其中上一点(不含端点),且满足勾股定理,则______.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.