满分5 > 高中数学试题 >

设函数,,其中,为正实数. (1)若的图象总在函数的图象的下方,求实数的取值范围...

设函数,其中为正实数.

1)若的图象总在函数的图象的下方,求实数的取值范围;

2)设,证明:对任意,都有.

 

(1) (2)证明见解析 【解析】 (1)据题意可得在区间上恒成立,利用导数讨论函数的单调性,从而求出满足不等式的的取值范围;(2)不等式整理为,由(1)可知当时,,利用导数判断函数的单调性从而证明在区间上成立,从而证明对任意,都有. (1)【解析】 因为函数的图象恒在的图象的下方, 所以在区间上恒成立. 设,其中, 所以,其中,. ①当,即时,, 所以函数在上单调递增,, 故成立,满足题意. ②当,即时,设, 则图象的对称轴,,, 所以在上存在唯一实根,设为,则,,, 所以在上单调递减,此时,不合题意. 综上可得,实数的取值范围是. (2)证明:由题意得, 因为当时,,, 所以. 令,则, 所以在上单调递增,,即, 所以,从而. 由(1)知当时,在上恒成立,整理得. 令,则要证,只需证. 因为,所以在上单调递增, 所以,即在上恒成立. 综上可得,对任意,都有成立.
复制答案
考点分析:
相关试题推荐

已知椭圆的左顶点为,右焦点为,斜率为1的直线与椭圆交于两点,且,其中为坐标原点.

1)求椭圆的标准方程;

2)设过点且与直线平行的直线与椭圆交于两点,若点满足,且与椭圆的另一个交点为,求的值.

 

查看答案

如图1,在等腰梯形中,两腰,底边的三等分点,的中点.分别沿将四边形折起,使重合于点,得到如图2所示的几何体.在图2中,分别为的中点.

1)证明:平面.

2)求直线与平面所成角的正弦值.

 

查看答案

追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数()的检测数据,结果统计如下:

空气质量

轻度污染

中度污染

重度污染

严重污染

天数

6

14

18

27

25

10

 

1)从空气质量指数属于的天数中任取3天,求这3天中空气质量至少有2天为优的概率;

2)已知某企业每天的经济损失(单位:元)与空气质量指数的关系式为,试估计该企业一个月(按30天计算)的经济损失的数学期望.

 

查看答案

已知数列满足,且.

1)证明数列是等差数列,并求数列的通项公式;

2)若,求数列的前项和.

 

查看答案

的内角的对边分别为,已知,点为边的中点,且.

1)求

2)若,求的面积.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.