在一个不透明的容器中有6个小球,其中有4个黄球,2个红球,它们除颜色外完全相同,如果一次随机取出2个球,那么至少有1个红球的概率为( )
A. B. C. D.
设复数(为虚数单位),则复数的虚部为( )
A. B. C. D.
已知集合,则( )
A. B. C. D.
设函数,,其中,为正实数.
(1)若的图象总在函数的图象的下方,求实数的取值范围;
(2)设,证明:对任意,都有.
已知椭圆:的左顶点为,右焦点为,斜率为1的直线与椭圆交于,两点,且,其中为坐标原点.
(1)求椭圆的标准方程;
(2)设过点且与直线平行的直线与椭圆交于,两点,若点满足,且与椭圆的另一个交点为,求的值.
如图1,在等腰梯形中,两腰,底边,,,是的三等分点,是的中点.分别沿,将四边形和折起,使,重合于点,得到如图2所示的几何体.在图2中,,分别为,的中点.
(1)证明:平面.
(2)求直线与平面所成角的正弦值.