已知函数.
(1)若函数有2个零点,求实数的取值范围;
(2)若关于的方程有两个不等实根,证明:
①;
②.
设直线与抛物线交于两点,与椭圆交于两点,设直线(为坐标原点)的斜率分别为,若.
(1)证明:直线过定点,并求出该定点的坐标;
(2)是否存在常数,满足?并说明理由.
如图,四棱锥中,底面为菱形,底面,,,是上的一点,.
(1)证明平面;
(2)设二面角为,求与平面所成角的大小
如图,在中,角,,的对边分别为,,,且.
(1)求的大小;
(2)若,为外一点,,,求四边形面积的最大值.
已知函数(为自然对数的底数,,为常数)有三个不同的零点,则实数的取值范围为________.
已知双曲线的左右两个焦点分别为,,为其左、右两个顶点,以线段为直径的圆与双曲线的渐近线在第一象限的交点为,且,则该双曲线的离心率为________.