一种掷硬币走跳棋的游戏:在棋盘上标有第1站、第2站、第3站、…、第100站,共100站,设棋子跳到第站的概率为,一枚棋子开始在第1站,棋手每掷一次硬币,棋子向前跳动一次.若硬币的正面向上,棋子向前跳一站;若硬币的反面向上,棋子向前跳两站,直到棋子跳到第99站(失败)或者第100站(获胜)时,游戏结束.
(1)求;
(2)求证:数列为等比数列;
(3)求玩该游戏获胜的概率.
已知函数.
(1)若函数有2个零点,求实数的取值范围;
(2)若关于的方程有两个不等实根,证明:
①;
②.
设直线与抛物线交于两点,与椭圆交于两点,设直线(为坐标原点)的斜率分别为,若.
(1)证明:直线过定点,并求出该定点的坐标;
(2)是否存在常数,满足?并说明理由.
如图,四棱锥中,底面为菱形,底面,,,是上的一点,.
(1)证明平面;
(2)设二面角为,求与平面所成角的大小
如图,在中,角,,的对边分别为,,,且.
(1)求的大小;
(2)若,为外一点,,,求四边形面积的最大值.
已知函数(为自然对数的底数,,为常数)有三个不同的零点,则实数的取值范围为________.