举出几个现实生活中与不等式有关的例子
两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.哪种购物方式比较经济?你能把所得结论作一些推广吗?
如图,居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD和EFGH构成的面积为的十字形地域,计划在正方形MNPQ上建一座花坛,造价为4200元/;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为210元/;再在四个空角(图中四个三角形)上铺草坪,造价为80元/.设总造价为S(单位:元),AD长为x(单位:m).当x EF为何值时,S最小?并求出这个最小值.
相等关系和不等关系之间具有对应关系:即只要将一个相等关系的命题中的等号改为不等号就可得到一个相应的不等关系的命题.请你用类比的方法探索相等关系和不等关系的对应性质,仿照下表列出尽可能多的有关对应关系的命题;指出所列的对应不等关系的命题是否正确,并说明理由.
相等关系 | 不等关系 | |
相等关系的命题 | 不等关系的命题 | 判断正误 |
(1)若,则 | (1)若,则. | 正确 |
|
|
|
一般认为,民用住宅的窗户面积必须小于地板面积,但窗户面积与地板面积的比应不小于10%,而且这个比值越大,采光效果越好.
(1)若一所公寓窗户面积与地板面积的总和为,则这所公寓的窗户面积至少为多少平方米?
(2)若同时增加相同的窗户面积和地板面积,公寓的采光效果是变好了还是变坏了?
当k取什么值时,一元二次不等式对一切实数x都成立.