图(1)是某条公共汽车线路收支差额y关于乘客量x的图象.
(1)试说明图(1)上点A,点B以及射线AB上的点的实际意义;
(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图(2)(3)所示,你能根据图象,说明这两种建议是什么吗?
为了保护水资源,提倡节约用水,某城市对居民生活用水实行“阶梯水价”.计费方法如下表,若某户居民本月交纳的水费为48元,求此户居民本月用水量.
每户每月用水量 | 水价 |
不超过的部分 | 3元/ |
超过但不超过的部分 | 6元/ |
超过的部分 | 9元/ |
要建造一个容积为,深为6m的长方体无盖蓄水池,池壁的造价为95元/,池底的造价为135元/,如何设计水池的长与宽,才能使水池的总造价控制在7万元以内(精确到0.1 m)?
某人开汽车以的速度从地到远处的地,在地停留后,再以 的速度返回地,把汽车离开地的路程表示为时间(从地出发是开始)的函数,并画出函数的图象;再把车速表示为时间的函数,并画出函数的图象.
试用描点法画出函数的图象,求函数的定义域、值域;讨论函数的单调性、奇偶性,并证明.
在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率,(单位:)与管道半径r(单位:cm)的四次方成正比.
(1)写出气体流量速率,关于管道半径r的函数解析式;
(2)若气体在半径为3cm的管道中,流量速率为,求该气体通过半径为r的管道时,其流量速率v的表达式;
(3)已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率(精确到).