满分5 > 高中数学试题 >

设抛物线的焦点为,过且斜率为的直线与交于,两点,. (1)求的方程; (2)求过...

设抛物线的焦点为,过且斜率为的直线交于两点,

    (1)求的方程;

    (2)求过点且与的准线相切的圆的方程.

 

(1) y=x–1,(2)或. 【解析】 (1)根据抛物线定义得,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线的方程;(2)先求AB中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程. (1)由题意得F(1,0),l的方程为y=k(x–1)(k>0). 设A(x1,y1),B(x2,y2). 由得. ,故. 所以. 由题设知,解得k=–1(舍去),k=1. 因此l的方程为y=x–1. (2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为 ,即. 设所求圆的圆心坐标为(x0,y0),则 解得或 因此所求圆的方程为 或.
复制答案
考点分析:
相关试题推荐

抛物线的顶点在坐标原点,焦点轴的正半轴上,点在抛物线上.

1)求抛物线的方程;

2)在抛物线上有一点,且的纵坐标为正数,过作圆的切线,切点为,当四边形的面积为时,求出切线的方程.

 

查看答案

如图,长方体中,,点分别在上,

1)求直线所成角的余弦值;

2)过点的平面与此长方体的表面相交,交线围成一个正方形,求平面把该长方体分成的两部分体积的比值.

 

查看答案

在一个如图所示的直角梯形内挖去一个扇形,恰好是梯形的下底边的中点,将所得平面图形绕直线旋转一圈,求所得几何体的表面积和体积.

 

查看答案

一个直棱柱的底面是有一个内角为的三角形,面积最大的一个侧面是边长为的正方形,则这个棱柱的外接球的表面积是___________.

 

查看答案

已知直线与抛物线交于两点,与准线交于点,为抛物线的焦点,若,则的值为___________.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.