已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴的上方交双曲线C于点M,且
(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为求的值.
在一个特定时段内,以点E为中心的7n mile以内海域被设为警戒水域.点E正北55n mile处有一个雷达观测站A,某时刻测得一艘匀速直线行驶的船只位于点A北偏东45°且与点A相距40n mile的位置B,经过40分钟又测得该船已行驶到点A北偏东(其中,)且与点A相距10n mile的位置C.
(I)求该船的行驶速度(单位:n mile /h);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
在正三棱柱中,,,求:
异面直线与所成角的大小;
四棱锥的体积.
实数a,b满足a•b>0且a≠b,由a、b、、按一定顺序构成的数列( )
A.可能是等差数列,也可能是等比数列
B.可能是等差数列,但不可能是等比数列
C.不可能是等差数列,但可能是等比数列
D.不可能是等差数列,也不可能是等比数列
已知椭圆的中心为原点,为的左焦点,为上一点,满足且,则椭圆的方程为( )
A. B. C. D.
设,则“”是“且”的( )
A.充分非必要条件 B.必要非充分条件 C.充分必要条件 D.既非充分又非必要条件