中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数-样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、万...用纵式表示,十位、千位、十万位.--.用横式表示,例如用算筹表示就是,则可用算筹表示为( )
A. B.
C. D.
已知集合,则( )
A. B. C. D.
设为虚数单位,表示复数的共轭复数,若,则( )
A. B. C. D.
已知数列、满足,其中数列的前项和,
(1)若数列是首项为.公比为的等比数列,求数列的通项公式;
(2)若,求证:数列满足,并写出的通项公式;
(3)在(2)的条件下,设,求证中任意一项总可以表示成该数列其它两项之积.
设(、为实常数).
(1)当时,证明:不是奇函数;
(2)设是奇函数,求与的值;
(3)当是奇函数时,研究是否存在这样的实数集的子集,对任何属于的、,都有成立?若存在试找出所有这样的;若不存在,请说明理由.
已知点为双曲线的左、右焦点,过作垂直于轴的直线,在轴的上方交双曲线C于点M,且
(1)求双曲线C的方程;
(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为求的值.