已知,且
(1)证明:
(2)若恒成立,求的取值范围
平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为
(1)写出曲线的极坐标方程和曲线的直角坐标方程;
(2)若射线平分曲线,且与曲线交于点,曲线上的点满足,求.
已知函数
(1)若讨论的单调性;
(2)当时,若函数与的图象有且仅有一个交点,求的值(其中表示不超过的最大整数,如.
参考数据:
已知椭圆的短轴顶点分别为,且短轴长为为椭圆上异于的任意-一点,直线的斜率之积为
(1)求椭圆的方程;
(2)设为坐标原点,圆的切线与椭圆C相交于两点,求面积的最大值.
为了了解居民的家庭收人情况,某社区组织工作人员从该社区的居民中随机抽取了户家庭进行问卷调查.经调查发现,这些家庭的月收人在元到元之间,根据统计数据作出如图所示的频率分布直方图.已知图中从左至右第一 、二、四小组的频率之比为,且第四小组的频数为.
(1)求;
(2)求这户家庭月收人的众数与中位数(结果精确到);
(3)这户家庭月收入在第一、二、三小组的家庭中,用分层抽样的方法任意抽取户家庭,并从这户家庭中随机抽取户家庭进行慰问,求这户家庭月收入都不超过元的概率.
如图,在四棱锥中,侧面底面,底面为梯形
(1)证明:;
(2)若为正三角形,求点到平面的距离.