己知的增广矩阵是,则此方程组的解是________.
设函数,且,则_______.
已知,则复数的虚部为__________.
已知集合,,则__________.
已知椭圆C:+=1(a>b>0)的两个焦点分别为F1,F2,短轴的一个端点为P,△PF1F2内切圆的半径为,设过点F2的直线l与被椭圆C截得的线段为RS,当l⊥x轴时,|RS|=3.
(1) 求椭圆C的标准方程;
(2) 若点M(0,m),(),过点M的任一直线与椭圆C相交于两点A.B,y轴上是否存在点N(0,n)使∠ANM=∠BNM恒成立?若存在,判断m、n应满足关系;若不存在,说明理由。
(3) 在(2)条件下m=1时,求△ABN面积的最大值。
如图①,在直角梯形ABCD中,AD=1,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图②所示的几何体.
(1)求证:AB⊥平面ADC;
(2)若AC与平面ABD所成角的正切值为,求二面角B—AD—E的余弦值。