化简的值是( )
A. B. C. D.
已知,,则( )
A. B. C. D.
已知椭圆C:()的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线上任意一点,过F作TF的垂线交椭圆C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当最小时,求点T的坐标.
设复数β=x+yi(x,y∈R)与复平面上点P(x,y)对应.
(1)若β是关于t的一元二次方程t2﹣2t+m=0(m∈R)的一个虚根,且|β|=2,求实数m的值;
(2)设复数β满足条件|β+3|+(﹣1)n|β﹣3|=3a+(﹣1)na(其中n∈N*、常数),当n为奇数时,动点P(x、y)的轨迹为C1.当n为偶数时,动点P(x、y)的轨迹为C2.且两条曲线都经过点,求轨迹C1与C2的方程;
(3)在(2)的条件下,轨迹C2上存在点A,使点A与点B(x0,0)(x0>0)的最小距离不小于,求实数x0的取值范围.
在平面直角坐标系O中,直线与抛物线=2相交于A、B两点.
(1)求证:命题“如果直线过点T(3,0),那么=3”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
已知圆C过两点A(0,4),B(4,6),且圆心在直线x﹣2y﹣2=0上.
(1)求圆C的方程;
(2)若直线l过原点且被圆C截得的弦长为6,求直线l的方程.