如图,在三棱柱中,底面,,,,点,分别为与的中点.
(1)证明:平面.
(2)求与平面所成角的正弦值.
如图,平面,四边形为矩形,四边形为直角梯形,,,,.
(1)求证:;
(2)求三棱锥的体积.
如图,在四棱锥中,平面ABCD,底部ABCD为菱形,E为CD的中点.
(1)求证:BD⊥平面PAC;
(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;
如图,四棱锥P-ABCD中,底面ABCD为矩形,PD⊥平面ABCD,点E、F分别是AB和PC的中点.
(1)求证:AB⊥平面PAD;
(2)求证:EF//平面PAD.
如图,在正方体中,点是棱上的一个动点,平面交棱于点.下列命题正确的为_______________.
①存在点,使得//平面;
②对于任意的点,平面平面;
③存在点,使得平面;
④对于任意的点,四棱锥的体积均不变.
已知△ABC所在平面外一点P到△ABC三顶点的距离都相等,则点P在平面ABC内的射影是△ABC的_______.(填“重心”、“外心”、“内心”、“垂心”)