如图,曲线由曲线和曲线组成,其中点为曲线所在圆锥曲线的焦点,点为曲线所在圆锥曲线的焦点.
(1)若,求曲线的方程;
(2)如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;
(3)对于(1)中的曲线,若直线过点交曲线于点,求的面积的最大值.
如图,长方体中,,,点为面的对角线上的动点(不包括端点).平面交于点,于点.
(1)设,将长表示为的函数;
(2)当最小时,求异面直线与所成角的大小.(结果用反三角函数值表示)
如图,直三棱柱内接于高为的圆柱中,已知,,,为的中点.求:
(1)圆柱的全面积;
(2)异面直线与所成的角的大小;
(3)求直线与平面所成的角的大小.
在平面直角坐标系中,点到两点的距离之和等于4,设点的轨迹为曲线
(1)求曲线的方程;
(2)设直线与交于两点,为何值时?
在长方体中,,,、分别是所在棱、的中点,点是棱上的动点,联结,.如图所示.
(1)求异面直线,所成角的大小(用反三角函数值表示);
(2)(理科)求以、、、为顶点的三棱锥的体积.
(文科)求以、、、为顶点的三棱锥的体积.
设、是关于的方程的两个不相等实根,则过、两点的直线与双曲线的公共点个数是( )
A.3 B.2 C.1 D.0