在直角坐标系中,圆,直线.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求圆和直线的极坐标方程;
(2)设、分别为圆和直线上的点,且满足,设,求的最小值.
设函数.
(1)讨论在上的单调性;
(2)证明:在上有三个零点.
已知椭圆:的离心率为,为椭圆上一点.
(1)求椭圆的方程;
(2)过点的直线交椭圆于,两点,直线与直线相交于点,求证:直线,,的斜率成等差数列.
河北省高考综合改革从2018年秋季入学的高一年级学生开始实施,新高考将实行“3+1+2”模式,其中3表示语文、数学、外语三科必选,1表示从物理、历史两科中选择一科,2表示从化学、生物、政治、地理四科中选择两科.某校2018级入学的高一学生选科情况如下表:
选科组合 | 物化生 | 物化政 | 物化地 | 物生政 | 物生地 | 物政地 | 史政地 | 史政化 | 史生政 | 史地化 | 史地生 | 史化生 | 合计 |
男 | 130 | 45 | 55 | 30 | 25 | 15 | 30 | 10 | 40 | 10 | 15 | 20 | 425 |
女 | 100 | 45 | 50 | 35 | 35 | 35 | 40 | 20 | 55 | 15 | 25 | 20 | 475 |
合计 | 230 | 90 | 105 | 65 | 60 | 50 | 70 | 30 | 95 | 25 | 40 | 40 | 900 |
(1)完成下面的列联表,并判断是否在犯错误概率不超过0.01的前提下,认为“选择物理与学生的性别有关”?
(2)以频率估计概率,从该校2018级高一学生中随机抽取3名同学,设这三名同学中选择物理的人数为,求的分布列和数学期望.
| 选择物理 | 不选择物理 | 合计 |
男 |
|
| 425 |
女 |
|
| 475 |
合计 |
|
| 900 |
附表及公式:
0.150 | 0.100 | 0.050 | 0.010 | |
2.072 | 2.706 | 3.841 | 6.635 |
如图,是一个三棱锥,是圆的直径,是圆上的点,垂直圆所在的平面,,分别是棱,的中点.
(1)求证:平面;
(2)若二面角是,,求与平面所成角的正弦值.
已知数列的前项和.
(1)求的通项公式;
(2)记,求的前项和.